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Kinetic equations of the quantum particle motion in a symmetric dimer are studied for the case
of fluctuating site energies and a fluctuating intersite coupling matrix element. Modulations of the
site energies are incorporated via quantum fluctuations of a thermal bath whereas the fluctuations of
the intersite coupling are taken into account by a stochastic description. In contrast to the quantum
fluctuations which are considered in the weak coupling limit, the stochastic luctuations are included
in an exact manner. The exact solution of the averaged kinetic equations are obtained in the case of
an Ohmic thermal bath with a white noise spectrum and dichotomous fluctuations of the intersite

coupling.
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The transfer of quantum particles, such as electrons,
protons, and excitons in molecular systems is a subject
of constant interest in chemical physics (see, e.g., [1,2]).
Depending on the influence of the medium this transfer
may occur in the coherent and incoherent regime [3]. To
accommodate the medium effects on the transfer dynam-
ics, two different methods are used. In the first method
the medium is modeled as a bath of harmonic oscilla-
tors staying in thermal equilibrium. This method relies
on the treatment of the Liouville equation for the whole
system (quantum particle plus medium degrees of free-
dom) and the use of an appropriate elimination procedure
to obtain the equation of motion for the reduced density
matrix of the quantum particle [3-8]. As the second ap-
proach, we mention the method where the environment
is treated phenomenologically and semiclassically via the
introduction of a stochastic term into the Hamiltonian
(Haken-Strobl-Reineker model) [3,9-14].

Recently, a complementary approach which combines
the advantages of both above methods has been sug-
gested [15-17]. In this approach the medium is con-
sidered mainly as a set of quantum harmonic oscillators
[thermal bath (TB)]. But with respect to some highly an-
harmonic and low frequency medium degrees of freedom
a stochastic description is utilized. Such an approach is
extremely useful if the medium contains mobile atoms
or molecular groups. The method has been applied re-
cently to the study of incoherent bridge mode assisted
transfer of a quantum particle in a dimer with dichotom-
ically fluctuating site energies [16]. If the transfer of a
quantum particle is caused by an interaction with a sin-
gle damped harmonic oscillator (reaction coordinate) the
rate of incoherent transfer may be changed by several or-
ders of magnitude depending on the dichotomical energy
fluctuation [16].

In the present paper we consider the transfer of a quan-
tum particle in a symmetric dimer with quantum fluc-
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tuating site energies and a dichotomically fluctuating in-
tersite matrix element. The complete Hamiltonian of the
system under consideration consists of three terms,

H(t) = Ho+ V(t) + Hr . (1)

The first term,

Ho = Bo | (1] +Eo | 2)(2 | +3Loll 12| + 211},
2)

describes the coherent motion of a quantum particle be-
tween the two sites “1” and “2”. Here, Ey is the site
energy of the quantum particle in the basis of localized
states | 1) and | 2), and Ly is the intersite matrix element.
The second term in Eq. (1),

V(t) = Fy | 1(L| +F2 | 2)(2] +%a(t)[l DE+12)(,
()

includes fluctuations of the site energies caused by the
generalized forces

Fo =Y kna(bly +bn) - (4)
A

The TB is modeled by a set of harmonic oscillators (here-
after A =1)

Hy = an)\(i).:,\zn/\ +3). (5)
ni

The intersite matrix element fluctuations, «(t), result
from the stochastic degrees of freedom of the environ-
ment.

2982 ©1995 The American Physical Society



51 DISSIPATIVE TRANSFER OF A QUANTUM PARTICLEINA ... 2983

In Egs. (3)—(5) wnx is the frequency of the nAth
bath mode, b}, (b)) is the creation (annihilation) op-
erator, K, is the coupling constant, and a(t) denotes
a dichotomous Markov process (DMP). It takes the val-
ues at) = +A with zero mean (a(t)) = 0 and expo-
nentially decaying autocorrelation function (a(t)a(t')) =
A? exp[—v(t —t')] [18,19]. A and v are the mean square
amplitude and reverse autocorrelation time of a(t), re-
spectively. Such a process corresponds, for example, to
the thermal activated switching of a charged molecular
group or ion between local minima of symmetric bistable
potential. Note also that the above choice of the model
Hamiltonian supposes statistically independent fluctua-
tions of the sites energies.

To treat the intersite transfer dynamics in the consid-
ered problem we have to set up the kinetic equation for
the difference o,(t) = 7v11(t) — v22(t) of the monomer
state populations v,,(t) = Sp[¥nnp(t)] (n = 1,2) and
the interstate coherence oy(t) = i[y12(t) — v21(t)]. Here,
Ynnt =| n)(n’ | is the transition operator and p(t) denotes
the reduced density matrix of the quantum particle [the
notation o,(t) is used here bearing in mind the corre-
spondence of the considered problem with the so-called
spin-boson problem [20]].

Let us consider a situation in which the quantum fluc-
tuations are regarded as weak (the limiting case of a small
reorganization energy of the medium) but the intersite
matrix element fluctuations may be arbitrary. Then the
relevant kinetic equations can be reduced either from the
general kinetic equations obtained in [7,16] or from the
Argyres and Kelley master equation [17,21] originally de-
rived in the theory of spin resonance and relaxation [22].
Proceeding and using the standard assumption of an ini-
tial decoupling of the quantum particle and the TB, one
obtains in the second Born approximation with respect
to the coupling of the quantum particle and the TB

52(t) = (Lo + a(t)]oy (1)
5u(0) = ~[Lo + a0 ) ~ [ WK~ O)oy(®) . (©
The symmetrized autocorrelation function

Ki(r) = 3[Ka(7) + Ka(r)] &)
with

Kn=1,2(7) = [(Fa(1)Fn(0))1 + (Fa(0)Fu(r))r]  (8)

characterizes the energy fluctuations of the
state |1) and |2), respectively. Here, F'(7)
= exp(iHr7)F exp(—iHr7), and (---)7 denotes the av-
erage over the equilibrium state with temperature 7' of
the TB. It can be simply shown that o,(t) alone obeys a
Langevin-like equation which is formally equivalent to
the equation of motion of a harmonic oscillator with
frequency-dependent friction and stochastically modu-
lated mass and force coefficient.

Equations (6) can be averaged with respect to the
DMP without any approximation in using the Shapiro

and Loginov theorem [23]. According to this theorem,
any retarded functional, f(t), of the dichotomous pro-

cess a(t) must obey the following equation:

SHaOF@) = @) + (s Z7®) . )

where (- - -) denotes the average over the DMP. Using Eq.
(9) and the remarkable property of the DMP, a?(t) = A2,
we obtain from Egs. (6) the final set of coupled integro-
differential equations. They contain the quantities o, 4(t)
averaged with respect to the DMP and the related first
moments (a(t)o, (1)),

2 (7:(0)) = Lotay (1)) + (a(t)oy (1)),

%(a(t)az(t)) = —v{a(t)o(t)) + Lo{a(t)ay (1)) + Aoy (1)) ,

GO = ~Lo(e(0) — @O0 0) — [ Kt =)oy )a

%(a(t)ay(t)) = —v{a(t)oy(t)) — Lo{a(t)o(t)) — A*(o.(t)) - _/O K, (t — t'){a(t)oy(t))dt'. (10)

We chose the initial conditions as («(0)c,,(0)) = 0,
(02(0)) = no, and (oy(0)) = mo. Equations (10) are
the relevant kinetic equations we are interested in.

Their further analysis requires the knowledge of the
correlation function K,(7) which is determined by the
spectral density

Jn(w) = 2#2&,2,,,\[5@.: —wnpa) — 0w+ wa )] - (11)
A

Here, we take a high-temperature limit and the classical

[

description of the TB with white noise spectrum J(w) =
nw [24,25], such that

K, (1) =nkTé(7) . (12)

This high-temperature approximation is appropriate
whenever the bandwidth of the medium degrees of free-
dom is much larger than the intrasite matrix element
[3,11]. The choice of the correlator K,(7) in the form (12)
corresponds to the generalization of the Haken-Strobl-
Reineker (HSR) model [3,11] to the case of a dichotom-
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ically fluctuating intersite matrix element. It can be
treated as a basic approximation bearing in mind the
possibility of its subsequent generalization. Therefore,
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solution of the set of Egs. (10) follows as

4
A(ps) ep,t .

we restrict ourselves to the case of Eq. (12). Equation (02(t)) = B'(p,) (13)
(10) can be solved exactly using the Laplace-transform s=1 i
method. Providing an initial localization of the quantum
particle at site “1”, i.e., (0;(0)) = 1, {(o4(0)) = 0, the This expression contains
J
A(p) =P +2(v + &P + (B¢v + £ + 17 + LT+ A%)p + 17 + A% + A%+ v€” + LFE,
B(p) = p* +2(v + €)p® + (€2 + 2A% + 2L% + 3¢v + v2)p? + (V2 + 2A%¢ + 2L%v + 2A%0 + 2L%¢ + ve?)p
+L3vé + A%v€ + L3v? — 2L2A% + Lj + A*
B'(p) =dB(p)/dp,  (14)
and
v_E, \/v? + € + 2/E87 — 4137 + 16L2A% — 42 — 413
P12 = —5 5 > y
v_ &, V2 + €2 —2,/€202 — 41202 + 16L3A2 — 4A2 — 42
__Z_Ss 15
Psa="973 2 (15)
[
are the roots of the equation B(p) = 0. Here we denote 1 1
KC = —“—-—-2‘———2‘ < E , (19)
€ =nkpT . (16) 21 +4Lg/v

In the limiting case v,A — oo, f = A%/v = const,
which corresponds to the §-correlated fluctuations of the
intersite matrix element with strength f, we get from Eq.
(15)

¢, VE—4L3

—00 . 17
B 2 y D2,4 — —OO ( )

P13 = -f-
Hence, in the above limit our model correlates with the
HSR model [3,11] with the transition rates A\; 2 = —p1,3
and the parametrization: vo = £/2, J = Lo/2, 11 =
¥ = f/4. It reproduces the well-known criterion of the
transition from coherent to incoherent transfer [11]

£€>&=2Lo. (18)

This inequality means that in the case of £ < . the av-
eraged state populations {vy11(t)) = [1 + (0.(¢))]/2 and
(y22(t)) = [1 — (0.(t))]/2 approach their steady-state
value 11 = 722 = 1/2 by damped oscillations (coher-
ent transfer). On the other hand, for £ > £, the transfer
rates are real and the averaged state populations reach
their steady-state values without oscillations (incoherent
transfer).

It is necessary to stress that in contrast to the more
involved generalization of the HSR model [14], our model
allows an analytical treatment and thus reveals peculiar-
ities [26]. We get the expressions for the transition rates
As = —p, in the rather simple analytical form (15) for
arbitrary amplitude A and frequency v of the intersite
matrix element fluctuations where the situation is gener-
ally more involved. If the Kubo number [27] of the DMP,
K = A/v, is less than

then the criterion Eq. (18) is modified as

€ > ¢ =2Ley/1 - 4K2. (20)

As can be seen from Eq. (20) the colored dichotomous
noise reduces the transition temperature which corre-
sponds to the parameter £.. Note that by virtue of
the fact that at K — 0, the dichotomous noise has the
Gaussian-like limit (i.e., it can be considered as a pre-
Gaussian noise [28]), one can expect that the similar
criterion (20) will also be valid for the weakly colored
Gaussian noise (K <« 1). Note also that in the case
K < K, for the parameter £ being in the range

e <& <E< &, (21)

where £1 2 = \/4LZ 4+ v2 F 2, the transition rates Az 4
have complex values again. However, the numerical ex-
amination shows that the coeflicients corresponding to ps3
and py4 in the expansion (13) are small in this case and,
therefore, the transfer remains incoherent.

In the case of strongly colored noise and K > K.,
all four roots (15) are complex if £ < &, i.e., p1 = p3,
p3s = pj, and thus the transfer of the quantum particle
occurs in the coherent regime. A more complicated situ-
ation appears in the intermediate range (21). In this case
there are two real roots, p; and p,, and two complex con-
jugated roots, p3 and ps = p}. Therefore, depending on
the relation between A, v, and Ly, the three regimes (co-
herent, incoherent, and a combined one) are possible (see
also [26,29]). An example for such a combined regime is
given in Fig. 1(a) for the special case A = Ly, which
corresponds to a situation where the coherent transfer
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FIG. 1. Dependence of (y11) on time ¢ (in units of L;*') for
different values ¢ with A = Lo and v = 0.1Lo: (a) £ = 0.5Lo,
(b) £ = 5Lo.

is stochastically interrupted. It is seen from Fig. 1(a)
that in the case of slow fluctuation of a(t) (v << Lo)
there are two stages of the transfer process. The first
stage is characterized by the damped coherent oscilla-
tions, and the second one reflects an incoherent behavior
occurring on the essentially different time scale. This
combined regime is transformed into the two-stage inco-
herent relaxation [Fig. 1(b)], when £ > {;. Note that
in both cases a long-time behavior of the averaged state
populations is completely driven by the fluctuations of
the intersite matrix element, a(t), independently of the
parameter £, and has the incoherent character with tran-
sition rate A\; = v/2 (Fig. 1). In this case the temper-
ature dependence of the transition rate A; must have
an exponential character according to the Arrhenius law,
A1 ~ exp(—BV,), where Vp is the barrier height of the
above bistable potential. In the reverse case of fast fluc-
tuations of a(t) (v >> Lo), the long-time behavior of the
averaged state populations (v, (t)) is mainly determined
by the dissipation processes in the thermal bath. The de-
cay of the averaged state populations occurs much faster
(Fig. 2). In the coherent regime the rate of this decay
grows linearly with temperature according to Egs. (15)
in contrast to the case of slow fluctuations.
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FIG. 2. Dependence of (v11) on time ¢ (in units of Ly *) for
different values ¢ with A = Lo and v = 10Lo: (a) £ = 0.1Lo,
(b) ¢ = 5Lo.

In summary, it can be stated that the interplay of the
dichotomic fluctuations of the intersite matrix element
and the dissipative processes in the thermal bath can es-
sentially modify the transfer dynamics of a quantum par-

ticle in symmetric dimer. In the present paper we have
examined this problem for the case of an Ohmic ther-

mal bath with white noise spectrum, where an analytical
treatment is possible. In particular, it was shown that the
weakly colored noise reduces the transition temperature
from the coherent regime to the incoherent one accord-
ing to Eq. (20). Furthermore, it could be demonstrated
that the strongly colored noise causes additional features
in the transfer dynamics. The appearance of a combined
regime [Fig. 1(a)] and the feature in the temperature de-
pendence of the transfer rate has been discussed. Note
that the introduction of a finite correlation time of the
thermal bath and the inclusion of low-temperature cor-
rections is possible in the present model. The correspond-
ing work is in progress.
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